### UNIVERSITY OF CAMBRIDGE



crr34@cam.ac.uk

## The role of diffusiophoresis in the drying of thin coatings

**Clare R. Rees-Zimmerman & Alex F. Routh** 

Department of Chemical Engineering and Biotechnology, University of Cambridge



# **2. Diffusiophoresis**

**Diffusiophoresis has been** suggested as an explanation.







*Figure 1:* Schematic of the drying of a film containing two types of particles.

Figure 2: Cryo-SEM image showing an accumulation of small particles at the top surface (Atmuri et al., 2012).

Figure 3: Schematic of the exclusion zones around the larger particles, which give rise to diffusiophoresis.





#### 0.6 0.6 0.0 0.2 8.0 0.0 0.2 0.6 0.0 0.4 0.4 $\hat{Z}$ Â

**Figure 5:** Model results without (left) and with (centre and right) diffusiophoresis at different values of  $R_{\rm DP}$ .



With diffusiophoresis: Increasing the strength of diffusiophoresis results in more small particles at the top surface.

**Next steps:** Microfluidics experiment to verify the importance of diffusiophoresis



#### Acknowledgement

Oppenheimer studentship for funding

*Figure 6: Microfluidic device (left)* and drawing (right).